23 research outputs found

    Robotics for rehabilitation of hand movement in stroke survivors

    Get PDF
    This article aims to give an overall review of research status in hand rehabilitation robotic technology, evaluating a number of devices. The main scope is to explore the current state of art to help and support designers and clinicians make better choices among varied devices and components. The review also focuses on both mechanical design, usability and training paradigms since these parts are interconnected for an effective hand recovery. In order to study the rehabilitation robotic technology status, the devices have been divided in two categories: end-effector robots and exoskeleton devices. The end-effector robots are more flexible than exoskeleton devices in fitting the different size of hands, reducing the setup time and increasing the usability for new patients. They suffer from the control of distal joints and haptic aspects of object manipulation. In this way, exoskeleton devices may represent a new opportunity. Nevertheless their design is complex and a deep investigation of hand biomechanics and physical human–robot interaction is required. The main hand exoskeletons have been developed in the last decade and the results are promising demonstrated by the growth of the commercialized devices. Finally, a discussion on the complexity to define which design is better and more effective than the other one is summarized for future investigations

    Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via Tool Condition Monitoring System in turning of AISI 5140

    Get PDF
    Optimization of tool life is required to tune the machining parameters and achieve the desired surface roughness of the machined components in a wide range of engineering applications. There are many machining input variables which can influence surface roughness and tool life during any machining process, such as cutting speed, feed rate and depth of cut. These parameters can be optimized to reduce surface roughness and increase tool life. The present study investigates the optimization of five different sensorial criteria, additional to tool wear (VB) and surface roughness (Ra), via the Tool Condition Monitoring System (TCMS) for the first time in the open literature. Based on the Taguchi L9 orthogonal design principle, the basic machining parameters cutting speed (vc), feed rate (f) and depth of cut (ap) were adopted for the turning of AISI 5140 steel. For this purpose, an optimization approach was used implementing five different sensors, namely dynamometer, vibration, AE (Acoustic Emission), temperature and motor current sensors, to a lathe. In this context, VB, Ra and sensorial data were evaluated to observe the effects of machining parameters. After that, an RSM (Response Surface Methodology)-based optimization approach was applied to the measured variables. Cutting force (97.8%) represented the most reliable sensor data, followed by the AE (95.7%), temperature (92.9%), vibration (81.3%) and current (74.6%) sensors, respectively. RSM provided the optimum cutting conditions (at vc = 150 m/min, f = 0.09 mm/rev, ap = 1 mm) to obtain the best results for VB, Ra and the sensorial data, with a high success rate (82.5%)

    Advanced technology for gait rehabilitation: An overview

    Get PDF
    Most gait training systems are designed for acute and subacute neurological inpatients. Many systems are used for relearning gait movements (nonfunctional training) or gait cycle training (functional gait training). Each system presents its own advantages and disadvantages in terms of functional outcomes. However, training gait cycle movements is not sufficient for the rehabilitation of ambulation. There is a need for new solutions to overcome the limitations of existing systems in order to ensure individually tailored training conditions for each of the potential users, no matter the complexity of his or her condition. There is also a need for a new, integrative approach in gait rehabilitation, one that encompasses and addresses all aspects of physical as well as psychological aspects of ambulation in real-life multitasking situations. In this respect, a multidisciplinary multinational team performed an overview of the current technology for gait rehabilitation and reviewed the principles of ambulation training

    Advanced technology for gait rehabilitation --- An overview

    Get PDF
    Most gait training systems are designed for acute and subacute neurological inpatients. Many systems are used for relearning gait movements (nonfunctional training) or gait cycle training (functional gait training). Each system presents its own advantages and disadvantages in terms of functional outcomes. However, training gait cycle movements is not sufficient for the rehabilitation of ambulation. There is a need for new solutions to overcome the limitations of existing systems in order to ensure individually tailored training conditions for each of the potential users, no matter the complexity of his or her condition. There is also a need for a new, integrative approach in gait rehabilitation, one that encompasses and addresses all aspects of physical as well as psychological aspects of ambulation in real-life multitasking situations. In this respect, a multidisciplinary multinational team performed an overview of the current technology for gait rehabilitation and reviewed the principles of ambulation training

    A Fully Automatic Fresh Apple Juicer: Peeling, Coring, Slicing and Juicing

    No full text
    With the fresh apple juice as an example, a fully automatic and intelligent juicer prototype was built via the integrated application of servo positioning modules, human-machine interface, image vision sensor system and 3D printing. All steps including peeling, coring, slicing and juicing were achieved automatically. The challenging technical problems about the identification and orientation of apple core, and adaptive peeling were settled creatively. The trial operation results illustrated that the fresh apple juice can be produced without manual intervention and the system has potential application in the crowded sites, such as mall, school, restaurant and hospital

    A Fully Automatic Fresh Apple Juicer: Peeling, Coring, Slicing and Juicing

    No full text
    With the fresh apple juice as an example, a fully automatic and intelligent juicer prototype was built via the integrated application of servo positioning modules, human-machine interface, image vision sensor system and 3D printing. All steps including peeling, coring, slicing and juicing were achieved automatically. The challenging technical problems about the identification and orientation of apple core, and adaptive peeling were settled creatively. The trial operation results illustrated that the fresh apple juice can be produced without manual intervention and the system has potential application in the crowded sites, such as mall, school, restaurant and hospital

    Biosurfactant production and hydrocarbon degradation activity of endophytic bacteria isolated from Chelidonium majus L.

    No full text
    Abstract Background The process of plant growth in the contaminated environment is often inhibited and entails the neutralization of harmful compounds. To reduce the negative impact of harmful compounds microorganisms produce unique compounds called biosurfactants. This paper describes the potential of culturable endophytic microorganisms from synanthropic plant-Chelidonium majus L. for the production of biosurfactants, as indirect plant promoting factors as well as their degradation activity. Emulsifying activity and degradation potential of tested strains were assessed by cultivation of isolates in the presence of diesel oil and waste engine oil. Results Ten bacterial strain were isolated. Analysis of emulsifying activity revealed that all isolates possessed the ability for biosurfactant production. However, one of the isolated endophytes—2A, identified as Bacillus pumilus, exhibited the highest emulsifying activity (OD500 1.96). The same strain has shown very high degradation potential, both for diesel oil and waste engine oil hydrocarbons. Results obtained with the Phytotoxkit tests revealed that the addition of biosurfactant isolated from B. pumilus 2A strain resulted in stimulation of seed germination in soil contaminated with diesel oil (137%) and waste engine oil (120%). Positive impact of the biosurfactant produced by B. pumilus 2A on the growth of Sinapis alba in hydrocarbons contaminated soil was demonstrated. Conclusions The endophytic strain identified as Bacillus pumilus 2A produce biosurfactant that is able to act as plant-growth promoting agent. Endophytic bacteria isolated from Chelidonium majus L. exhibit potential for hydrocarbons degradation and biosurfactant production. These properties provide promising perspectives for application of biosurfactants as potential agents for bioremediation of environment contaminated with hydrocarbons
    corecore